skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dressing, C D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Rossiter-McLaughlin (RM) effect is a method that allows us to measure the orbital obliquity of planets, which is an important constraint that has been used to understand the formation and migration mechanisms of planets, especially for hot Jupiters. In this paper, we present the RM observation of the Neptune-sized long-period transiting planet HIP41378 d. Those observations were obtained using the HARPS-N/TNG and ESPRESSO/ESO-VLT spectrographs over two transit events in 2019 and 2022. The analysis of the data with both the classical RM and the RM Revolutions methods allows us to confirm that the orbital period of this planet is ~278 days and that the planet is on a prograde orbit with an obliquity of λ = 57.1 −17.9 +26.1 °, a value which is consistent between both methods. HIP41378 d is the longest period planet for which the obliquity has been measured so far. We do not detect transit timing variations with a precision of 30 and 100 minutes for the 2019 and 2022 transits, respectively. This result also illustrates that the RM effect provides a solution to follow up on the transit of small and long-period planets such as those that will be detected by ESA's forthcoming PLATO mission. 
    more » « less
  2. We report the discovery by the TESS mission of a super-Earth on a 4.8-days orbit around an inactive M4.5 dwarf (TOI-1680), validated by ground-based facilities. The host star is located 37.14 pc away, with a radius of 0.2100 ± 0.0064R, mass of 0.1800 ± 0.0044M, and an effective temperature of 3211 ±100 K. We validated and characterized the planet using TESS data, ground-based multi-wavelength photometry from TRAPPIST, SPECULOOS, and LCO, as well as high-resolution AO observations from Keck/NIRC2 andShane.Our analyses have determined the following parameters for the planet: a radius of 1.466−0.049+0.063Rand an equilibrium temperature of 404 ± 14 K, assuming no albedo and perfect heat redistribution. Assuming a mass based on mass-radius relations, this planet is a promising target for atmospheric characterization with theJames WebbSpace Telescope (JWST). 
    more » « less
  3. TOI-2015 is a known exoplanetary system around an M4 dwarf star, consisting of a transiting sub-Neptune planet in a 3.35-day orbital period, TOI-2015 b, accompanied by a non-transiting companion, TOI-2015 c. High-precision radial-velocity measurements were taken with the MAROON-X spectrograph, and high-precision photometric data were collected, primarily using the SPECULOOS, MUSCAT, TRAPPIST and LCOGT networks. We collected 63 transit light curves and 49 different transit epochs for TOI-2015 b. We recharacterized the target star by combining optical spectra obtained by the MAROON-X, Shane/KAST and IRTF/SpeX spectrographs, Bayesian model averaging (BMA) and spectral energy distribution (SED) analysis. The TOI-2015 host star is aK= 10.3 mag M4-type dwarf with a subsolar metallicity of [Fe/H] = −0.31 ± 0.16, and an effective temperature ofTeff≈ 3200 K. Our photodynamical analysis of the system strongly favors the 5:3 mean-motion resonance and in this scenario the planet b (TOI-2015 b) has an orbital period ofPb= 3.34 days, a mass ofMp= 9.02-0.36+0.32M, and a radius ofRp= 3.309-0.011+0.013R, resulting in a density ofρp= 0.25 ± 0.01ρ= 1.40 ± 0.06 g cm−3; this is indicative of a Neptune-like composition. Its transits exhibit large (> 1 hr) timing variations characteristic of an outer perturber in the system. We performed a global analysis of the high-resolution radial-velocity measurements, the photometric data, and the TTVs, and inferred that TOI-2015 hosts a second planet, TOI-2015 c, in a non-transiting configuration. Our analysis places it near a 5:3 resonance with an orbital period ofPc= 5.583 days and a mass ofMp= 8.91-0.40+0.38M. The dynamical configuration of TOI-2015 b and TOI-2015 c can be used to constrain the system’s planetary formation and migration history. Based on the mass-radius composition models, TOI-2015 b is a water-rich or rocky planet with a hydrogen-helium envelope. Moreover, TOI-2015 b has a high transmission-spectroscopic metric (TSM=149), making it a favorable target for future transmission spectroscopic observations with theJWSTto constrain the atmospheric composition of the planet. Such observations would also help to break the degeneracies in theoretical models of the planet’s interior structure. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. We validate the Transiting Exoplanet Survey Satellite (TESS) object of interest TOI-2266.01 (TIC 8348911) as a small transiting planet (most likely a super-Earth) orbiting a faint M5 dwarf (V= 16.54) on a 2.33 d orbit. The validation is based on an approach where multicolour transit light curves are used to robustly estimate the upper limit of the transiting object's radius. Our analysis uses SPOC-pipeline TESS light curves from Sectors 24, 25, 51, and 52, simultaneous multicolour transit photometry observed with MuSCAT2, MuSCAT3' and HiPERCAM, and additional transit photometry observed with the LCOGT telescopes. TOI-2266 b is found to be a planet with a radius of 1.54 ± 0.09R, which locates it at the edge of the transition zone between rocky planets, water-rich planets, and sub-Neptunes (the so-called M dwarf radius valley). The planet is amenable to ground-based radial velocity mass measurement with red-sensitive spectrographs installed in large telescopes, such as MAROON-X and Keck Planet Finder (KPF), which makes it a valuable addition to a relatively small population of planets that can be used to probe the physics of the transition zone. Further, the planet's orbital period of 2.33 days places it inside a ‘keystone planet’ wedge in the period-radius plane where competing planet formation scenarios make conflicting predictions on how the radius valley depends on the orbital period. This makes the planet also a welcome addition to the small population of planets that can be used to test small-planet formation scenarios around M dwarfs. 
    more » « less